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Abstract

Individuals face non-linear budget constraints in myriad situations. We test
a fundamental assumption of economic analysis in such settings: that individuals
display stable preferences when facing linear and non-linear incentives. We use a lab-
oratory experiment to characterize how revealed preferences are affected by changes
in the complexity of the budget set environment. We find that choices under kinked
(piece-wise linear and convex) budgets exhibit a similar degree of rationality as
choices under linear budgets—with very high levels of internally consistent behav-
ior in each setting. However, for about half the subjects, individual choices across
settings are inconsistent with the maximization of a stable preference. Relative to
those who act consistently across settings, subjects displaying such arbitrary con-
sistency exhibit large and significant changes in utility parameters, risk premiums,
and price elasticities across settings. Finally, we show that subjects with initially
more sophisticated decision rules are most susceptible to changes in complexity.
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Individuals face non-linear incentives in myriad contexts including retirement savings

decisions (e.g., employer contributions and the Social Security earnings test), tax schedules

on labor supply (e.g., the earned income tax credit and progressive income taxes), and

service rates that vary with usage (e.g., mobile phone contracts and electric power). A

central assumption of economic analyses in these settings is that individual preferences,

and the decision rules that they imply, are invariant to whether individuals face linear or

non-linear incentives.

This paper tests this fundamental assumption and asks three inter-related questions.

First, do the choices individuals make in non-linear settings satisfy axioms of rational

choice? Second, do the choices individuals make when facing linear and non-linear incen-

tives satisfy the same set of preferences? Finally, do measures of economic behavior—such

as risk aversion and price responsiveness—depend on whether individuals face linear or

non-linear incentives?

To answer these questions, we designed a laboratory experiment that elicits a large

number of decisions from each individual subject in both linear and kinked budget sets

(i.e., those that are convex with piece-wise linear constraints). Our experimental design

builds on the work of Choi et al. (2007b), Choi et al. (2007a), Ahn et al. (2014), and Choi

et al. (2014), who use a graphical interface that presents subjects with a series of randomly

generated linear budget sets. We extend their toolkit to consider non-linear budget sets

as well. The experiment generates rich, individual-level data that allow powerful tests

of rationality and preference stability. The data also allow us to characterize how key

features of utility and demand functions vary depending on whether individuals face

linear or kinked budget sets.

Our first result is that the choices experimental subjects make when facing kinked

budget sets display a high degree of rationality. Specifically, we test whether subjects’

choices satisfy the Strong Axiom of Revealed Preference (SARP). Because a subject’s

choices either satisfy SARP or do not, we measure the degree of rationality in terms

of the smallest number of choices that need to be removed for the remaining data to

satisfy SARP. We find that the choices of nearly 75% of subjects satisfy SARP when we
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remove 4 or fewer choices (out of 50) and 90% of subjects satisfy SARP when we remove

6 or fewer choices. Indeed, we find the same result when analyzing decisions from linear

budget sets. These findings confirm the result of Choi et al. (2007a) that experimental

subjects display a high degree of rationality under linear budgets while also exploring

the previously unanswered question of whether individuals choices remain rational when

marginal incentives are no longer constant.

Our second result is that in spite of the fact that choices in kinked budget sets are

close to being internally consistent, these choices are often not consistent with the choices

subjects make when facing linear budget sets. We establish this result by testing for com-

pliance with SARP in data that pool choices from linear and kinked budget sets. Using

a cutoff value of 4 removals, we find that 46% of subjects have choices that, while consis-

tent in either linear or kinked settings considered separately, are not consistent with the

maximization of a single stable preference. This finding is robust to alternative cutoffs.1

We call this type of behavior arbitrary consistency. While a minority of subjects make

choices that are consistent within and across both budget settings, arbitrary consistency

is the most common type of behavior in our data.

Our third result is that subjects displaying arbitrary consistency demonstrate differ-

ent patterns of economic behavior in linear and kinked settings. We show this result by

estimating a structural utility model for each individual in each treatment. The model is

flexible enough to incorporate multiple behavioral features and does a good job of match-

ing observed behavior from the experiment. We benchmark this estimation approach

using both data from simulated subjects and data from subjects who display consistent

preferences throughout. We find that relative to these fully consistent subjects, who

see very small changes in estimates, the arbitrarily consistent exhibit large changes in

structural parameters, risk premiums, and price elasticities when moving across budget

settings. Interestingly, we find that the direction of change is not uniform: some subjects

1To ensure comparable and robust results, we hold the total number of observations in our pooled
test at 50, and we repeat the test 10 times using different, randomly selected data from linear and kinked
choices. The fraction of subjects displaying arbitrarily consistent preferences grows to 50% when we use
a cutoff value of 6 removals. The fraction of subjects with consistent choices across settings is 14% and
30% when we use cutoff values of 4 and 6, respectively.
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become more sensitive to price changes or risk-taking, and others become less sensitive.

This result highlights the value of our experimental design, as it allows us to characterize

individual-level changes in behavioral parameters that result from exposure to different

types of incentive structures.

Overall, our results show that the fundamental assumption that preferences are stable

across linear and non-linear budgets is violated by a large number of experimental subjects.

Importantly, these violations are not driven by potentially careless mistakes. Indeed, we

show that the presence of kinked incentives leads about half of subjects to adjust their

behavior to different yet internally consistent decision rules. Moreover, these alternative

decision rules are markedly different in both their responsiveness to price changes and the

implied attitudes toward risk.

This paper contributes to several literatures. First, our finding of arbitrary consistency

is related to work identifying context-dependent shifts between alternative yet apparently

rational rules of decision making. Ariely et al. (2003) demonstrate evidence of this type

of behavior in the coherent arbitrariness literature.2 Our experiment contributes to this

literature in two ways. First, by using explicit tests of rationality, our approach rules

out an irrationality hypothesis, according to which the greater complexity of the kinked

budget constraint leads otherwise-rational decision makers to cease behaving rationally.

This hypothesis is ruled out by our finding that behavior in kinked settings is as internally

consistent as behavior in linear settings. Moreover, our approach ensures that subjects

switch between alternative and rational decisions rules, as opposed to between decision

rules that merely appear rational. Second, our experiment documents systematic differ-

ences in revealed preferences along the foundational domain of whether incentives faced

by decision makers are linear or non-linear.

A second set of related papers studies heuristic explanations that aim to explain irreg-

ularities of choices under non-linear incentives. One prominent hypothesis put forth by

Liebman and Zeckhauser (2004) is that of “ironing,” which has been shown to be relevant

2Ariely et al. (2003) use the term coherent arbitrariness for the general phenomena of context-
dependent shifting between apparently rational decisions rules. We prefer the term arbitrary consistency
and use it throughout.
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in other contexts (e.g., Ito, 2014; Feldman et al., 2016; Rees-Jones and Taubinsky, 2016).

Under this heuristic, individuals mentally average a set of marginal price schedules (each

applying at different points in the commodity space range) and then act upon this average

price. We explore this possibility by estimating models of demand based on average prices

in the kinked budgets and show that this heuristic fails to explain our results. The data

also rule out two additional alternative hypotheses. First, we rule out the possibility that

subjects in the experiment who change their behavior are driven by a greater propensity

to choose the kink point due to its salience. Second, we rule out the notion that arbitrary

consistency is driven by choices that violate first-order stochastic dominance (FOSD).

While the ironing, salience, and FOSD hypotheses are rejected by the data, we provide

evidence for an alternative hypothesis. Specifically, the evidence points to a complexity

hypothesis in the spirit of Simon (1956). Under this hypothesis, the added complexity

of the kinked choice environment causes rational actors with ordinarily price-responsive

decision rules to switch to alternative—but still rational—decision rules. Importantly,

this hypothesis would imply that subjects with initially less sophisticated or less price-

responsive decision rules do not need to adjust their choices across settings. We offer

evidence in favor of this hypothesis by showing that arbitrarily coherent subjects do in-

deed display more complex and price-responsive decision rules in the simpler linear budget

setting than do subjects with fully consistent preferences. This mechanism is consistent

with the work of Abeler and Jäger (2015), who find that behavior in more complicated

tax incentive schemes fundamentally changes from behavior in less complicated but oth-

erwise equivalent schemes.3 In contrast to their work, our detailed individual-level data

allow us to show that behavior in more complex environments can be rationalized by a

utility function and that the behavioral changes brought on by complexity, while large in

magnitude, do not systematically diminish responsiveness to complex price incentives.

Our paper is also related to a literature studying behavioral welfare economics. Bern-

heim and Rangel (2009) develop tools for welfare analysis under the assumption that ax-

3Unlike this previous work, our “complex” environment represents a minimal level of complexity (a
single kink added to a linear budget set) that is presented in a very easily understood manner, and yet
we still observe changes in individual behavior.
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ioms of rational behavior may be separately satisfied across alternative decision-making

frames. Similarly, Chetty et al. (2009) and Goldin and Homonoff (2013) show how manip-

ulating the salience of sales taxes impacts tax elasticities of demand. In their approaches

to welfare analysis, these papers rely on the assumption that individuals display arbitrary

consistency across different settings. This paper bolsters the relevance of these approaches

by providing individual-level evidence of the existence and prevalence of arbitrarily con-

sistent behavior.

Finally, our findings have important consequences for the economic analysis of behav-

ior under non-linear incentives in a variety of domains where non-linear pricing is common,

including labor economics, public finance, health economics, and industrial organization,

among others. We discuss some of these implications below, but here we note two impor-

tant insights. First, our results suggest that caution is warranted in applying elasticity

estimates derived from linear settings to non-linear settings (and vice versa). Second,

our findings suggest that policy makers should appreciate how the choice to “kinkify” an

incentive schedule can fundamentally change preferences, individual price responsiveness,

and, therefore, the size of behavioral distortions.

The remainder of the paper is organized as follows. Section 1 outlines the experi-

mental design. Section 2 reports measures of the internal consistency of individual choice

data within and across treatments. We present a taxonomy of individual rationality types

in Section 3, where we also estimate structural utility models to characterize individual

utility parameters and estimates of risk premiums and price elasticities. Section 4 con-

siders alternative explanations for the findings. Section 5 discusses the relevance of the

experimental results for economic analysis, and Section 6 concludes.

1 Experimental Design

At a basic level, the laboratory experiment elicits choice data in two settings: a control

setting, where incentives are represented by linear budget sets, and a treatment setting,

where non-linear incentives are represented by kinked budget sets. We restrict our atten-

tion to non-linear sets of this form for several reasons. First, they represent an empirically
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prevalent case. Second, this case provides the minimal amount of complexity relative to

the linear pricing case. Third, the methods for data analysis are familiar to economists.

Finally, this type of budget set provides very clear incentives and, consequently, interest-

ing, testable hypotheses.

Each subject in the experiment makes choices from 50 separate budget sets in each

of the two treatments. Subjects make choices under risk. Individuals form a portfolio by

choosing quantities of two securities that pay experimental tokens (3 tokens = 1 dollar)

if the corresponding state of the world occurs and zero otherwise. The budget sets that

individuals face in each treatment are randomly generated. At the end of the experiment,

the computer randomly selects one of the 50 decision problems for each treatment and,

with equal probability, randomizes which state occurs. This determines the payoff to the

subject. The experimental design ensures that individuals have incentives compatible with

making choices according to their risk preferences. The instructions given to experiment

participants are included in Appendix A.

The decision problem is presented to individuals in graphical form, using an experi-

mental interface developed by Choi et al. (2007b). The methods of Choi et al. (2007b)

have been applied to different types of decisions (see, e.g., Choi et al., 2007a; Fisman

et al., 2007; Ahn et al., 2014; Choi et al., 2014), demonstrating the versatility of the ex-

perimental interface. We extend this graphical budget set toolkit by allowing for kinked

budget sets. An example of the interface for a kinked budget set case can be seen in

Figure 1.4

The interface is particularly suited to our design because it allows us to elicit many

decisions from each individual relatively quickly. Moreover, the graphical interface justifies

the interpretation of the treatment in the experiment as providing full information about

the price schedule. Indeed, one of the powerful features of this interface is that subjects

have access to a great deal of information. For example, as the subject moves the mouse

to select an allocation, the portfolio under consideration is displayed in three different

parts of the interface (see Figure 1). Finally, this setting provides context-free decisions

4Appendix A provides an example of a linear budget set as displayed by the interface.
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that make inference from the experimental data as free of outside influences as possible.

All in all, then, the experimental design allows us to circumvent the usual constraints on

empirical work and to attribute any observed differences in behavior across treatments

to the form of the incentive structure alone, as we fully control the information sets of

subjects in all treatment conditions, ensure that choices are not limited by confounding

decision rigidities, and eliminate possible endogeneity from correlations between the form

of marginal incentives that individuals face and unobserved characteristics.5

A particular decision in the design of the experiment is how to randomize the kinked

sets. The linear treatment follows the experiment in Choi et al. (2007a) by selecting linear

sets with at least one axis above 50 tokens and with both intercepts below 100 tokens.

In the kinked treatment, each budget set is based on one from the linear treatment.

Specifically, the interface randomly selects a linear budget from the linear treatment

and generates a kinked budget set such that (1) both sets share the smallest intercept,

(2) the new budget set is convex, and (3) the new budget set is downward sloping. In

practice, the interface randomly chooses a kink point (xK , yK) in the linear budget set.

Assuming, without loss of generality, that the x-intercept is greater than the y-intercept,

the interface then randomly chooses a new intercept xMax Kink ∈ (xK , xMax Linear). This

process generates a kinked budget set that is a subset of the original linear budget set.

By modifying the largest intercept, the experiment generates kink points that are likely

to be located in relevant regions of the budget set for all participants.6 In addition, in

5Even in field experiments that manipulate information sets of decision makers (i.e. “provide infor-
mation”), researchers usually compare the status quo with a fully informed condition (see, e.g., Chetty
and Saez, 2013; Jones, 2010). Without controlling the level of information in both treatments, it is
difficult to ascribe differences in behavior under linear and non-linear incentives to the structure of the
incentives alone and not to differences in the degree of information known about each incentive scheme.
Additionally, in empirical settings, individuals might be constrained, for instance, in their labor supply
decisions by labor market rigidities (see, e.g., Hoynes, 1996) as well as by complementarities with other
decisions, such as in the choice of housing (see, e.g., Chetty and Szeidl, 2007), preventing researchers
from studying maximization problems defined over the constraints of interest only. Finally, individuals
might face incentives that are a function of characteristics that are unobserved to the econometrician. In
the analysis of labor supply and taxation, for example, it is well understood that an individual’s ability
can potentially determine the tax bracket and marginal tax rate faced by the decision maker (see, e.g.,
Gruber and Saez, 2002).

6For instance, a risk-neutral participant would never choose the bundle represented by the smallest
intercept. Altering the smaller intercept would lead to tests of rationality with low statistical power.
Our design, by generating budget set differences across treatments in regions of the budget set that are
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Figure 1: Experimental Subject Interface (with a Kinked Budget Set)

Notes: The figure presents the interface utilized by experimental subjects in each round of the experiment
(with a kinked treatment example in this case).

cases where the choice in the linear set is present in the kinked set, our procedure allows

us to test whether individuals choose the kink point solely due to its salience.

The experiment ran for 4 sessions at the UC Berkeley XLab, with a total of 142 subjects

recruited. Subjects were a mix of students and staff at UC Berkeley.7 The order of the

treatment and control settings was reversed for two of the sessions.8 Subjects received

a show-up fee of $5 and payouts based on the choices they made, the choice round that

was selected, and the realization of the state of the world that occurred. The payment

was calibrated so that subjects were compensated at their estimated hourly wage of $15.

Each session lasted around 1 hour and 45 minutes, and the average payment to subjects

more likely to contain individual choices, increases the likelihood of detecting differences in choices across
treatments.

7In accordance with lab policy at the time, demographic characteristics were not collected. While
this limits the possibilities of heterogeneity analysis, the within-subjects design employed here makes this
immaterial to identification.

8The results are not affected by the order of the treatment.
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was around $27.

2 Internal Consistency of Choice

This section describes the data generated by the experiment, tests for internal consis-

tency of the choice data within each treatment, and assesses whether decisions from both

treatments can be explained with a common decision rule.

An initial step toward understanding the patterns of behavior elicited in the exper-

iment is to visually analyze scatter plots of subjects’ decisions. Figure 2 presents plots

for four experimental subjects: IDs 112, 128, 422, and 209.9 Each row plots the decisions

made by each subject in three different ways. The first graph is a scatter of the decisions

in each round. In this and all other graphs in the figure, the blue stars represent the

choices made in the linear treatment, while the red circles represent the choices made

in the kinked treatment. The second graph plots the token share of security X to the

log price ratio (throughout the paper we use the natural log). The third graph plots the

expenditure share on security X to the log price ratio. Given that the log price ratio

is not properly defined at kink points, we plot the range of possible log price ratios at

the kink as a line connecting two dots whenever a subject chooses the kink point. The

length of the line contains information regarding the angle at the kink point. A longer

line represents a smaller (interior) angle and more pronounced non-linearity.

The first two rows in Figure 2, corresponding to IDs 112 and 128, depict rational

behavior and show patterns consistent with results from previous graphical budget set

experiments. The first row plots the decisions of an individual (ID 112) whose choices are

consistent with maximizing expected value in both the linear and the kinked treatment.

In the linear treatment, this is evident from the fact that all choices correspond to placing

all the tokens on the cheapest security. In the kinked treatment, ID 112 chose a significant

number of decisions at the kink point, with virtually all other choices at the corner, as

would be expected from an individual maximizing expected value. The second row plots

decisions for an individual who is not price responsive at all when deciding the relative

9We include choice sets for all subjects in Appendix D of the Supplementary Online Material.
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Figure 2: Scatter Plots of Decisions by Selected IDs
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Notes: The figure contains three alternative plots of the raw data for four selected experimental subject IDs (equivalent
plots for all other experimental subjects can be found in Appendix D of the Supplementary Online Material). Data from
the linear treatment are in blue, and data from the kinked treatment are in red. The plot in the first column contains the
subject IDs’ chosen allocation (for each of the 50 choices) of tokens in the X account and tokens in the Y account. The plot
in the second column puts on the y-axis the ratio of the tokens allocated to the X account over the total tokens allocated
in each choice and puts on the x-axis the log of the ratio of the X token price to the Y token price. The plot in the third
column keeps the same x-axis and replaces the y-axis with the expenditure share on X. Given that the log price ratio is
not properly defined at kink points, we plot the range of possible log price ratios at the kink as a line connecting two dots
whenever a subject chooses at or very close to (within a 0.5 token epsilon ball of) the kink point (longer lines thus indicate
sharper kinks or smaller interior angles).
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shares of X and Y to select: ID 128 chose to equate the demand for securities in each

round of each treatment. The second column in the second row shows how the token

share is constant regardless of price variation or (in the kinked treatment) location of the

kink.

The next two subjects in Figure 2 exhibit choices that cannot be fully explained by

such simple decision rules. ID 422, like ID 128, made selections at the 45 degree line

in the linear treatment, as can be seen in the third row of Figure 2. However, in the

kinked treatment, the decision rule that ID 422 used seems to have switched completely,

with the subject no longer confining themself to equal shares of the two securities and

instead frequently choosing off the 45 degree line. ID 209 (row 4 of Figure 2) made interior

choices in all decisions, regardless of treatment. The second column suggests that these

choices generated relatively smooth, continuous token share by log price ratio schedules

and that this subject is responsive to price changes throughout the price space. While

such visual analysis is informative, whether the patterns in each treatment are consistent

with a coherent decision rule is not obvious from the choice plots alone (in the case of

ID 209, we find that choices are not consistent across settings). Indeed, most subjects’

decision rules are not so simple that they can be easily identified visually, and, as in

the case of ID 209, they require more robust and exact measurements of both internal

consistency and cross-treatment stability of preferences.

An informal definition of consistent preferences is that a subject’s choices do not

contradict each other. Formally, this is embodied by the Generalized Axiom of Revealed

Preference (GARP) of Afriat (1967) or the stronger condition of SARP. Afriat’s Theorem

states that if choice data satisfy GARP over linear budget sets, then the choice data

can be rationalized as the maximization of a continuous, strongly increasing, and concave

utility function (and vice versa). Matzkin (1991) and Forges and Minelli (2009) generalize

Afriat’s Theorem to non-linear budget sets. To ascertain whether the choice behavior

elicited in the laboratory is rational, we thus test whether the choice data satisfy SARP.

This approach is very robust, as it is purely non-parametric.

Choice data either satisfy or violate SARP. However, as most decision makers exhibit
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less than perfect rationality when making a large number of choices, several methods have

been developed to quantify the degree of deviation from SARP. Afriat (1972) proposed the

critical cost efficiency index (CCEI), which measures the amount by which each budget set

would have to be relaxed for the data to be consistent. A well-known alternative approach

to measuring deviations from rationality is to find the largest set of data that is internally

consistent. In this vein, the minimal number of choices that have to be removed for the

data to be consistent was first proposed as a measure of the distance from rationality by

Houtman and Maks (1985, henceforth HM).

The analyses in this paper focus on the HM measure over the CCEI measure for three

reasons. First, the HM measure is conceptually simpler and lends itself to clear interpre-

tation. Second, prior research by Choi et al. (2007b) that we build upon deemphasized the

HM measure in part because of computational difficulties. Recent advancements by Dean

and Martin (2016), who provided an improved algorithm to find the maximal consistent

subset of choice data, have since solved this problem, greatly reducing computation time.

The third reason is specific to the particular kind of deviation from rationality that this

experiment is interested in analyzing. We set out to compare violations of rationality

among choices made from a set of linear budgets, violations from a set of kinked budgets,

and violations from across the two sets. The CCEI would be systematically different if

we compare violations originating from a set of linear budget set choices to otherwise-

equivalent violations originating from a set of both linear and kinked budget set choices

(our pooled case), whereas the two violations are treated equivalently under the HM mea-

sure. This makes the CCEI an inappropriate and incommensurable measure of rationality

when the purpose is to compare levels of rationality for choices made facing linear bud-

get sets only and, alternatively, choices made facing both linear and kinked budget set

choices (as is our purpose).10 The analysis of the experimental data therefore focuses on

the HM measure rather than the CCEI score so that violations of rationality within each

treatment contribute to overall measures of rationality in the same way that violations

across treatments do, allowing for meaningful comparisons. Nonetheless, we report the

10Figure 16 in Appendix E of the Supplementary Online Material gives examples of two GARP viola-
tions that illustrate this point.
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CCEI measures for each subject as well, and we note broad correspondence with the HM

measure.11

Figure 3 plots the distribution of the HM measure by treatment. This graph answers

the first research question by showing that choices in kinked sets follow similar patterns of

rationality as those in linear sets. This notion is formalized by testing whether these two

distributions (the red and the blue lines) are different in a statistical sense. A Kolmogorov-

Smirnoff (KS) test does not reject the hypothesis that these distributions are the same

with a p-value of 0.87. In addition, most subjects exhibit behavior that is close to rational,

as the number of deviations that have to be removed is very small. For example, in both

treatments, removing 6 or fewer choices would leave consistent data for about 90% of

subjects. An even more stringent rationality criteria—removing 4 or fewer choices—would

leave consistent data for about 75% of subjects.

To analyze whether behavior in both settings can be attributed to a decision rule

that aims to satisfy the same set of preferences, we compute the HM measure pooling

data from both treatments. As the HM measure depends on the number of decisions,

we construct the pooled measure by taking 25 randomly selected observations from each

treatment. The measure reported is the mean of 10 repetitions of this process.12 The

HM measures for the pooled data show a significant increase in deviations from SARP.

KS tests comparing the distributions of the HM score for the pooled data and the HM

score for the data from either treatment reject the null hypothesis of equal distributions

at all conventional levels of statistical significance. This evidence suggests that while

subjects’ decision rules are rationalizable in either treatment alone, these decision rules

differ considerably. This is strong evidence that some subjects display preferences that

11See Appendix E of the Supplementary Online Material. Notably, the pattern described below—of
less consistent behavior across choices pooled from linear and kinked treatments than from either the
linear or the kinked treatment choices analyzed alone—is robust to use of the HM measure or either
Afriat’s or Varian’s CCEI measure as the metric for consistency. In the HM case, the pooled distribution
of HM scores shifts rightward. In the CCEI case (whether Afriat’s or Varian’s version), the distribution
shifts leftward, indicating that the result of a lesser degree of rationality in the pooled choices is robust
across these measures.

12The mean of 10 repetitions of the process is chosen to guard against the possibility of randomly draw-
ing a set of particularly “odd” and hard-to-reconcile choices on a given draw. However, the cumulative
distribution function (CDF) of HM removals based on any one of these 10 draws in practice is nearly
identical to the reported CDF in Figure 3 for the (10 repetition mean) pooled sample.
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Figure 3: HM Measure by Treatment
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Notes: The figure plots the distribution (as CDF and histogram) of individuals’ minimum number of HM
removals (out of 50 choices) needed to make their choice data consistent within each treatment (linear in
blue, kinked in red) and for the data pooled across treatments (in black).
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are arbitrarily consistent.

The results from this section show that most subjects are close to being consistent in

their choices in both the linear and kinked treatments. This means that when we analyze

the choices made in either treatment, an individual’s behavior in that treatment can be

rationalized by a utility function (after excluding a small number of deviant choices).

Decisions pooled from the linear and kinked treatments, however, are far from being

consistent for the typical individual. Taken together, these results provide evidence that

decision rules are different in each treatment, with the non-linear nature of kinked budget

sets appearing to generate arbitrarily consistent decision making. We now characterize

the heterogeneity in the type of behavior observed.

3 Characterizing Rationality, Risk Preferences, and

Price Responsiveness

The results from the previous section show that while subjects display mostly internally

consistent behavior in each treatment, their choices cannot easily be rationalized across

treatments. This section explores heterogeneity in behavior by classifying individuals by

rationality type. We then explore how the change in behavior from linear to kinked budget

set environments impacts estimates of structural utility parameters, risk premiums, and

price elasticities.

3.1 Taxonomy of Rationality Types

Table 1 presents a type taxonomy. Types 1-3 are individuals whose choices are not

internally consistent in at least one of the treatments. It follows that for each of these

types, the joint set of data between the two treatments would also be inconsistent. Type 4

corresponds to the group of individuals who are arbitrarily consistent (consistent in each

treatment but not across treatments). Individuals of Type 5 correspond to the traditional

model of rational behavior, being fully rational in each treatment and when we combine

data from the two.

As there is no natural (non-zero) threshold of HM removals below which we can say
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Table 1: Rationality Types

Type Linear Kinked Pooled
Treatment Treatment Treatment

1 (Never Consistent) Not Consistent Not Consistent Not Consistent
2 (Linearly Consistent) Consistent Not Consistent Not Consistent
3 (Non-Linearly Consistent) Not Consistent Consistent Not Consistent
4 (Arbitrarily Consistent) Consistent Consistent Not Consistent
5 (Coherently Consistent) Consistent Consistent Consistent

Notes: The table presents the classification of rationality types used throughout the paper. Consistent
behavior in each treatment (and across the two treatments) is defined by individual choice data that
require 6 or fewer HM removals in the treatment data (or, if across treatments, in the pooled set taking
25 observations from each treatment, as described in the text) for the individual’s remaining choices to
be internally consistent with maximization of some utility function.

that subjects are close enough to being utility maximizers, we develop a statistical test

that compares observed behavior with a benchmark of simulated choices to categorize

individuals according to the taxonomy in Table 1.13 Specifically, we first generate 1300

simulated subjects who maximize a constant relative risk aversion (CRRA) expected

utility function subject to logistic taste shocks. We obtain a variety of tests by varying

the relative importance of the taste shock, which is determined by the parameter γ. For

very large values of γ, choices are close to fully random. In this case, with 50 choices

per simulated subject, only about 5% of simulated subjects meet an HM critical value

threshold of less than 12. That is, simulated behavior (following 12 or fewer choice

removals) would appear consistent in spite of the fact that the choices were completely

random. Alternatively put, an actual decision maker could be said to have better than

fully random behavior at the 95% confidence level when their HM measure is less than

12.

Since Figure 3 shows that all subjects have behavior that would reject the fully ran-

dom benchmark, we instead consider a simulated subject who maximizes a CRRA utility

function with ρ = 1/2 (following Choi et al., 2007b) subject to a more modest logistic

taste shock (γ = 10) that implies a much closer approximation to expected utility max-

13Our process is analogous to the benchmarking procedure that Choi et al. (2007b) conduct for the
CCEI measure with linear budget sets and generalizes the test of Bronars (1987). We conduct the
benchmarking analysis for the HM measure in both the linear and kinked sets in Appendix B.
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Table 2: Type Proportion and Average HM Measure by Type

HM Measure
Type Proportion Linear Tr Kinked Tr Pooled Tr

1 (Never Consistent) 13.4% 6.79 8.05 10.48
2 (Linearly Consistent) 13.4% 1.53 5.16 8.35
3 (Non-Linearly Consistent) 13.4% 5.21 0.95 7.11
4 (Arbitrarily Consistent) 45.8% 1.20 1.52 7.43
5 (Coherently Consistent) 14.1% 0.40 0.55 1.39

Notes: The table presents the proportion of individuals of each type in the rationality type
taxonomy (see Table 1) and the average HM score across individuals of each type based on
decisions in each treatment and, for the pooled observations, on a procedure of randomly
sampling 25 observations from each treatment (with an individual’s HM score in the pooled
case being the average HM score computed across 10 repetitions of this random sampling
procedure, as described in the text).

imization and consistent preferences. In this case, the critical value for a test with 95%

confidence level is 4. In what follows, we use an HM critical value of 4 as the baseline

cutoff to distinguish between Consistent and Not Consistent data.14

The second column of Table 2 shows the type distribution at this critical value. The

proportions of Types 1-3 are individually small, as is the proportion of the next largest

group, Type 5s. The most striking feature of Table 2 is that almost half the subjects

correspond to Type 4, the arbitrarily consistent group, demonstrating rational behavior

in both treatments that is nonetheless not stable or consistent across treatments. Table

2 also presents the average HM score by treatment and type. The HM measures by type

fit the intuition behind the taxonomy. Members of the arbitrarily consistent (Type 4s)

group, for instance, have low HM measures for both treatments and high measures for

the pooled data, while those in the coherently consistent (Type 5s) group have low HM

measures across the board and thus display rational behavior in the three conditions.

The fact that Type 4 individuals are the most numerous is robust to the use of alter-

native critical values. Figure 4 shows the proportions across types for different choices of

the critical value. This figure shows that the proportion of arbitrarily consistent (Type 4)

individuals is approximately a third, and the largest share among all types, at a critical

14The full range of results from this benchmarking procedure, for different values of ρ and γ, are
presented in Appendix B. Appendix B also reports the type assignment of each individual subject.
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Figure 4: Robustness of Type Distribution to Critical Value
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Notes: The figure shows the sensitivity of rationality type classification (Types 1- 5, as in Table 1)
to variation in the critical value (employed to distinguish consistent from inconsistent behavior) in an
individual’s HM measure (Houtman and Maks, 1985). The HM measure indicates the minimum number
of choices that must be removed from the data for it to be internally consistent, and the HM critical value
cutoff indicates the HM measure below which we characterize an individual’s choice data as consistent.

value of 3 and then quickly rises to between roughly 45% and 55% of the population when

the critical value is between 4 and 7. The proportion of the coherently consistent (Type

5s) group grows as the critical value increases (a mechanical effect of lowering the bar of

rationality since if enough mistakes are allowed to be removed, everyone eventually be-

comes a Type 5), reaching a third of the population at a critical value of 6 and tying with

Type 4s once a higher critical value of 7 is chosen. This growth, however, is mostly due

to the decrease in the proportions of Types 1-3 rather than re-classification of arbitrarily

consistent individuals.

In summary, we categorize individuals by rationality type using a statistical test de-

signed to compare the value of the HM measure to that of a rational expected utility

maximizer subject to taste shocks. Using the results of this test to categorize individuals

by rationality type, we find that close to half of the subjects in the experiment exhibit
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choice data that correspond to rational behavior in each treatment but that do not max-

imize the same utility function across the linear and kinked treatments.

3.2 Risk Preferences

We now characterize how the cross-treatment inconsistency that characterizes our main

rationality type—Type 4—impacts measures of economically relevant behavior across

treatments. To do so, we estimate individual demand functions via a structural utility

model, yielding individual utility parameter estimates and resulting risk premium and

price elasticities. We characterize these values separately for the linear and kinked treat-

ments, and we study the change in these values for each individual subject. Across these

measures, we find economically and statistically significant changes in behavior relative

to a benchmark of the corresponding changes among subjects who act consistently across

treatments (Type 5s). As expected, these latter subjects exhibit essentially no changes in

utility parameters or in measures of risk or price responsiveness.15

3.2.1 Structural Utility Model

Choi et al. (2007a) note that choices in the kind of graphical budget set experiment

employed here display heaping at the certain outcome (as is the case in our sample),

which is consistent with a model of loss aversion. As a result, they propose a structural

model of demand employing a utility function that can accommodate both loss and risk

aversion, as first proposed by Gul (1991).16 This function has the following form:

U(X, Y ) = min{αV (X) + V (Y ), V (X) + αV (Y )}, (1)

where V (X) = X1−ρ/(1− ρ) is a constant relative risk aversion (CRRA) utility function.

We estimate the parameters in Equation (1) with an additional multiplicative stochastic

15Subjects of Types 1-3, in addition to being small in number, also fail to display basic consistency
in one or both of the treatments, as we show in Section 3.1, making the structural estimations (which
are based on utility-maximizing assumptions) for such subjects uninformative. We thus ignore them for
these analyses.

16This model is general enough to encompass both expected utility theory (EUT) and other alternatives
as specific instantiations.
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component using a weighted non-linear least square (NLLS) procedure.17

The model in Equation (1) characterizes behavior through the Arrow-Pratt measure

or relative risk aversion parameter ρ and a parameter for loss aversion α. Intuitively, a

larger value of ρ increases the curvature of a subject’s indifference curve. A larger value of

α leads to a more pronounced kink in the indifference curve at the certain outcome, which

increases the likelihood of observing a choice where X = Y . As a way to summarize the

overall risk tolerance of a given subject, we also report a calculated risk premium, r(1),

that depends on both parameters.18

We first consider how these structural parameters differ across subjects categorized

as Types 4 and 5.19 In the linear treatment, the average α value of Type 4 subjects is

significantly smaller (p-value of 0.001) than that of Type 5 individuals. The average ρ of

Type 4 subjects is also larger, but this difference is only marginally significant (p-value of

0.16).20 These results suggest some differences in risk preferences across subjects: Type 4

subjects are, on average, less loss averse but more risk averse. When computing the joint

17Appendix C contains the full details of the estimation procedure. This appendix also shows that
our procedure performs better in recovering the structural parameters of simulated subjects than an
alternative maximum likelihood estimation approach. This procedure is also more robust at finding
similar estimates in both linear and kinked settings, which is crucial given our objective of measuring
changes in structural parameters across settings. Our estimation constrains the value of α based on the
range of prices faced by a given subject (for reasons explained in Appendix C). Since the price range
is larger in kinked settings, we impose the constraint based on the kinked setting in both the linear
and the kinked estimations for each individual. Finally, we heed the warning in Choi et al. (2007a)
that structural estimation can be sensitive to outliers by removing a small number of extreme outliers
using quartile outlier detection. While Choi et al. (2007a) exclude from their analysis participants whose
structural parameters are sensitive to outliers, we take a more systematic approach, algorithmically
removing choices. This procedure affects few choices, with the modal and median number of outliers
removed for an individual in the linear and non-linear treatments being zero and the mean being less
than 1 in both treatments.

18The risk premium r(h) for a 50-50 gamble of winning vs. losing h∗100% of one’s wealth (with h being
between 0 and 1) is equivalent to the fraction r of current wealth that, if lost for certain, would make
the individual indifferent between having the remaining (1 − r) of their current wealth and taking the
gamble. For the utility function in Equation (1), the second-order approximation of r(h) when h = 1 is
r(1) ≈ α−1

α+1 + ρ2α
(α+1)2 . We follow Choi et al. (2007a) by computing this summary measure of risk aversion

for each subject at their estimated values of α and ρ. In the case where α = 1 (i.e., EUT), r(1) = ρ/2.
19Appendix G of the Supplementary Online Material contains the full set of results at the individual

level, including α, ρ, the risk premium, and elasticities (discussed in Section 3.3) estimated for each
subject based on their choices in each of the two treatments (see Tables 19-26).

20The same pattern holds in the kinked treatment, with both p-values being below 0.05. Tables 27–28
in Appendix G of the Supplementary Online Material present average values of these parameters and risk
premiums by treatment for Types 4 and 5.
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Figure 5: Magnitude of Individual Change in Structural Parameters Histogram by Type

Notes: The figure presents the histogram (separately for Types 4 and 5) of the magnitude of change
(across the linear and kinked treatments) in individual estimates of α (top panel) and ρ (bottom panel).
Extremely large magnitude changes (in excess of 1) are grouped together in the last bin for presentation
purposes. KS test p-values are reported for the null hypothesis that the Type 4 and Type 5 distributions
in each panel are the same. LR test p-values are reported for the null hypothesis that the Type 4 and
Type 5 sample means in each panel are the same.

risk premium measure r(1), however, we find that both types of subjects have similar risk

premiums. Estimates using choices from the kinked treatment reveal similar qualitative

results for both α and ρ.

3.2.2 Individual-Level Differences

One of the advantages of eliciting multiple decisions for each individual is the ability to

measure individual-level changes in estimated utility parameters across the linear and

kinked treatments. However, as in known in the literature, (e.g., Schildberg-Hörisch,

21



2018; Barseghyan et al., 2018), it is not unusual to find some degree of within-subject

variation across samples. For this reason, we compare the changes in parameter values for

Type 4 subjects to the changes for Type 5 subjects, who are known to be implementing a

consistent decision rule across settings. This allows us to separate differences in behavior

that may arise from switching between alternative consistent decision rules from those

that may be attributable to imprecision in measurement. We therefore test whether

the changes in the measured behavioral parameters of Type 4 subjects are significantly

greater than whatever shifts may be measured for Type 5 subjects. As these latter shifts—

to the extent that they are measured—are solely driven by imperfect measurement, this

benchmarking against Type 5s serves as a placebo test of sorts.

Figure 5 presents the distribution of the individual-level differences across linear and

kinked settings (in absolute value) of the estimated parameters α and ρ for both Type

4 and Type 5 subjects. For presentation purposes, this and related figures group large

magnitude changes (in excess of 1) in the last bin. For both α and ρ, it is clear that

the vast majority of Type 5 subjects see little or no change in estimated parameters. In

contrast, a large fraction of Type 4 subjects see large changes in both parameters. To

formalize this comparison, we conduct KS tests between the parameter distributions of

Types 4 and 5. In both cases, we can reject the null hypothesis that the changes for Types

4 and 5 are drawn from the same distribution with p-values smaller than 0.001.21,22

We find comparable results when we analyze changes in our risk premium measure,

r(1) : a KS test indicates that we can reject the null that the magnitude of change in

21As an alternative test, we use the fact that these series follow an exponential distribution (visible for
Type 5s when zooming in near zero) to conduct a test of sample means between Types 4 and 5. Figure 5
reports the result of these F tests on the null hypothesis that the parameter change magnitudes for Types
4 and 5 are distributed with the same exponential distribution (i.e., that their distribution means are the
same). For both α and ρ, we can reject this null with a p-value smaller than 0.001, concluding that the
much larger average change in individual-level α and ρ estimates for Type 4 subjects is a statistically
significant difference (for reference, the average/median change magnitude in α for Type 4 is 0.746/0.149
vs. 0.064/0.000 for Type 5, and the average/median change magnitude in ρ for Type 4 is 0.351/0.129 vs.
0.053/0.001 for Type 5).

22It is worth pointing out that the non-zero changes for Type 5 are driven by subjects who exhibit
near-EUT preferences. Specifically, an EUT maximizer would choose corners in the linear setting and
choices at the kink in the non-linear setting. Such is the case, for example, of ID 322, a Type 5. However,
a small number of deviations from EUT in the non-linear setting dramatically increases the estimated ρ.
For this reason, the non-zero changes for Type 5 are mostly driven by imprecision in the measurement
of structural parameters.
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r(1) across treatments for Type 4 is drawn from the same distribution as the change for

Type 5 (p-value of less than 0.001).23 To appreciate the size of these changes, note that

the average magnitude change for Type 4s is 0.197, which is 41.9% of the average in the

linear treatment. In contrast, Type 5s see a smaller average change of 0.041, which is a

10.5% difference from their linear-treatment average of 0.39.

In summary, the shift from a linear to a kinked budget environment leads the arbi-

trarily consistent group to display choices that imply different utility parameters. Impor-

tantly, the measured changes are above and beyond those (very small) changes measured

in a benchmark population (Type 5s) that makes consistent choices across budget en-

vironments. While the small changes observed in the latter group can be attributed to

imprecision in measurement, Type 4s exhibit a magnitude of parameter change that is

significantly above and beyond what might be ascribed to an artifact of the estimation

procedure.

It is also worth noting that while we find robust evidence that Type 4 subjects change

their behavior in economically meaningful ways across the linear and kinked settings,

there is substantial heterogeneity in the direction of change in risk attitudes. While some

Type 4 subjects become more averse to risk, others become less so. On average, there

is no precise change in either direction. This result showcases the value of experimental

designs that characterize individual-level changes in behavior, as these would otherwise

be missed in the aggregate.

3.3 Price Responsiveness

While the changes in structural parameters confirm the non-parametric result that Type

4 subjects significantly change their behavior between linear and kinked settings, the

changes do not directly characterize how economic behavior would differ across these two

settings or how these changes in behavior depend on price differentials. To further describe

the change in behavior of Type 4 subjects, we now consider how the above changes to

23An F test of the null hypothesis that the absolute value changes in r(1) are drawn from the same
exponential distribution for Types 4 and 5 also indicates a rejection with a p-value smaller than 0.001.
See Figure 21 in Appendix G of the Supplementary Online Material.
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structural parameters affect the price responsiveness of individual demand functions.

Using the estimated structural parameters, we can recover for each subject and each

treatment the log demand ratio log(x/y) as a function of the log price ratio log(px/py).

The elasticity of this demand with respect to the relative price ratio then reveals the

price elasticity of substitution between the two commodities. As this elasticity may take

different values depending on the price ratio, we first present the results of evaluating the

elasticity at two salient price ratio values, log(px/py) = 0 and log(px/py) = 1, computing

the size of the change in elasticity across treatments.

Figure 6 presents the distribution of the elasticity change magnitudes per individual

across treatments for both Type 4 and Type 5 subjects, with the elasticity evaluated at

log(px/py) = 0 in the top panel and log(px/py) = 1 in the bottom panel. At both prices,

KS tests indicate that we can reject the null that the magnitude of change in elasticities

across treatments for Type 4 is drawn from the same distribution as the change for Type 5

(p-value of less than 0.001 in the top and bottom panel).24 At both price ratios, the much

larger average change in individual-level elasticity estimates that is observed for Type

4 subjects indeed represents a statistically significant difference in price responsiveness

brought about by the switch in the budget environment.

The results in Figure 6 further show that Type 4 subjects display economically different

behavior in the linear and kinked settings. To obtain a more holistic description of the

change in estimated demand functions, we now consider differences in price responsiveness

across the full range of prices. Specifically, for each subject i, we calculate elasticities,

using the subject’s estimated structural parameters, at 100 evenly spaced log price ratios

to form vectors of price elasticities for the linear budgets ( ~eiL = eiL(log(~p))) and non-linear

budgets ( ~eiK = eiK(log(~p))), respectively.25 Figure 7 presents examples of these elasticity

estimates for selected individuals in each of the two budget treatments.

24An F test of the null hypothesis that the elasticity change magnitudes for Types 4 and 5 are distributed
with the same exponential distribution (i.e., that their distribution means are the same) allows us to reject
the null with a p-value smaller than 0.001 in both panels as well (for reference, in the top panel, the
average/median change magnitude for Type 4 is 0.381/0.173 vs. 0.054/0.005 for Type 5; in the bottom
panel, the average/median change magnitude for Type 4 is 0.298/0.159 vs. 0.054/0.005 for Type 5).

25The results are robust to using a higher number of price points.
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Figure 6: Magnitude of Individual Change in Elasticity Histogram by Type

Notes: The figure presents the histogram (separately for Types 4 and 5) of the magnitude of change
(across the linear and kinked treatments) in individual elasticity estimates with elasticity evaluated at
natural log(px/py) = 0 in the top panel and natural log(px/py) = 1 in the bottom panel. Extremely large
magnitude changes (in excess of 1) are grouped together in the last bin for presentation purposes. KS
test p-values are reported for the null hypothesis that the Type 4 and Type 5 distributions in each panel
are the same. LR test p-values are reported for the null hypothesis that the Type 4 and Type 5 sample
means in each panel are the same.

To quantify the change in behavior across settings, we consider two notions of distance:

the Euclidean distance and the angular distance. The Euclidean distance di = || ~eiL −
~eiK ||2 =

√∑pmax
p=pmin

(eiL(log(p))− eiK(log(p)))2 measures the distance in N -th dimensional

space between the two price elasticities using the 2-norm.26 This measure captures the

absolute change in price elasticities across the spectrum of log prices. In contrast, the

26The Euclidean distance can also be thought of as measuring the root mean square error (RMSE)
between the elasticities on the linear and non-linear budgets.
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Figure 7: Examples of Kinked and Linear Elasticities for Selected Subjects

Notes: For each of the selected subjects, the figure presents the results of the following procedure: using
the subject’s estimated structural parameters, we calculate demand functions and then elasticity values
when the elasticity is evaluated at 100 evenly spaced log price ratios log(px/py) within the range of
(-log(3.92),log(3.92)), the full range of log price ratios common to all subjects. This is done separately
for elasticities derived from the linear budget choices and elasticities derived from the non-linear budget
choices. These values are then plotted (and connected by a line) to offer a full description of how
the elasticity of the log demand ratio with respect to the log price ratio changes for a subject when
moving across budget treatment conditions. The Euclidean distance and angular distance measures of
the subject-specific degree of change in elasticity across treatments (averaged across the price range) is
also presented (see the text for further details).
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angular distance measures the relative difference between the price elasticity vectors. For

each subject, the angular distance, also known as the cosine similarity, between the two

price elasticity vectors is defined as ci = cos θi =
~eiL ·

~eiK

|| ~eiL||2||
~eiK ||2

.27 For our purposes, this

metric measures the change in relative price elasticities, with a value of ci = 1 (θi = 0)

implying that the price elasticity vectors are parallel and point in the same direction (the

relative price elasticities remain unchanged) and a value of ci = 0 (θi = π/2), implying

that they are orthogonal (the relative price elasticities change substantially).

These two metrics of distance capture different, though not mutually exclusive, mea-

sures of the change in price elasticities for subjects across the full range of prices. For

instance, ID 431 in Figure 7 illustrates a case where the Euclidean distance is non-zero,

indicating a difference in the absolute price elasticities between the linear and non-linear

budgets, while the angular distance is unity, indicating no change in the relative price

elasticities between the linear and non-linear budgets. Comparing ID 130 and ID 217 in

the figure, we see that ID 130 has a smaller Euclidean distance and thus a smaller absolute

change in price elasticities between the linear and non-linear budgets than does subject

ID 217, while ID 130 exhibits larger relative price changes than ID 217, as measured by

the angular distance. On the other hand, ID 112 (Type 5) exhibits almost no relative or

absolute change.

Figure 8 illustrates both larger absolute changes in price elasticities and larger relative

changes in price elasticities for Type 4s in comparison with Type 5s. Type 5s exhibit little

absolute change in price elasticities, with some 95% of subjects displaying less than 1 unit

of absolute price change, in comparison with less than 40% of Type 4s. In addition, some

95% of Type 5s display no relative price changes, in comparison to less than 75% of Type

4s. For both the absolute change and relative change in price elasticities, the two-sided

KS test rejects the null hypothesis that the distribution of these changes for Type 4s and

Type 5s are drawn from the same distribution (with a p-value less than 0.001).28

27This metric, which takes values on [−1, 1], measures the length of the angle between the two vectors
originating from the origin in N -th dimensional space and pointing toward the two price elasticity vectors
~eiL,

~eiK .
28An F test of the null hypothesis that the elasticity change magnitudes for Types 4 and 5 are distributed

with the same exponential distribution (i.e., that their distribution means are the same) indicates a
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Figure 8: Magnitude of Normalized Elasticity Change per Individual Histogram by Type

Notes: The figure shows histograms for two alternative measures of the average degree of change in indi-
vidual price elasticity across the kinked and linear treatments, the Euclidean distance measure (left panel)
and the angular distance measure (right panel). KS test p-values are reported for the null hypothesis
that the Type 4 and Type 5 distributions in each panel are the same. LR test p-values are reported for
the null hypothesis that the Type 4 and Type 5 sample means in each panel are the same.

Figure 8 shows that the results in Figure 6 are generalizable to the elasticity values

when evaluated across the full range of prices common to our experimental subjects.

Overall, our results indicate that moving to the more complex kinked price environment

uniquely affects Type 4s by significantly and sizably changing their demonstrated price

elasticity, risk aversion, and, utility parameters.

rejection with a p-value smaller than 0.001 for the absolute change measure and the relative change
measure. For the relative change measure, the random variable is scaled by -1 and then added to 1 to
generate an exponential distribution.
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4 Alternative Explanations of the Findings

Before proceeding to a discussion of how the findings impact economic analysis, we con-

sider potential explanations for our results. If we compare the average elasticities in the

linear treatment between the arbitrarily consistent and the coherently consistent groups,

it is clear that the former has significantly larger elasticities than the latter.29 Taking this

fact into account, we may offer a conjecture on the source of these results. Coherently

consistent subjects may be able to be consistent across treatments because they are, to

begin with, implementing relatively simple decision rules that are not very responsive to

relative price changes and therefore can be applied more consistently across more complex

settings. On the other hand, decision rules where the demand ratios are more sensitive to

price changes, such as those already employed in a simple pricing context by the arbitrar-

ily consistent group, may be harder to implement in the face of more complex, non-linear

pricing schemes.

Looking more deeply into the patterns of choice behavior for Type 4s and Type 5s,

we find evidence consistent with this complexity hypothesis. For instance, in the linear

treatment, coherently consistent subjects (Type 5s) exhibit many more decisions where

X and Y are chosen in a fixed 1-to-1 proportion than do arbitrarily consistent subjects

(Type 4s)—18.2% of choices vs. 3.1%.30 As choosing a fixed demand ratio requires no

attention to relative prices, such a decision rule is quite easy to extend from a context

with one set of governing prices to another with two governing price ratios since the price

ratios would be irrelevant to the fixed proportion choice in either case (and indeed, Type

5s continue to make choices at the 45 degree line at much higher rates than Type 4s when

they move to the kinked environment).

Similarly, a person guided by a decision rule that seeks either to maximize expected

29See Table 28 in Appendix G of the Supplementary Online Material.
30This is true if we look at the fraction of choices exactly on the 45 degree line or the fraction of choices

that are very close to the 45 degree line (to account for decision making that may have been intended to
be at the 45 degree line while actual token selection was not perfectly placed in the computer interface).
Taking a small circle of ε radius around the points on the 45 degree line puts the fraction of near-45
degree line choices at 49% for Type 5s and 29% for Type 4s in the linear treatment for ε = 3, with a
similar pattern for ε in the range of (0,3).
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value or to grab the bundle containing the largest state-specific commodity amount

(whether X or Y)—yielding mostly corner solutions when facing a linear budget (and,

specifically, the larger of the X and Y intercepts for a linear budget)—is also a person

whose demand ratio in practice is very insensitive to relative price changes for all but

two changes in prices.31 Such people have another simple and (mostly) price-invariant

decision rule—easy to implement both when prices are linear and when they are more

complicated and non-linear (since for most price changes, the change is irrelevant to the

decision to stay at the corner). In the data, we also see that coherently consistent subjects

in the linear treatment choose the most lucrative intercept significantly more often than

arbitrarily consistent subjects do (four times as often—37.3% vs. 9.7% of the time).32

These patterns point to possible price-insensitive decision rules that are more prevalent

among the coherently consistent group than among the arbitrarily consistent group.

While subjects display considerable heterogeneity in their decision rules, even within

types, the goal of this discussion is not to fully characterize these decision rules. Instead,

we aim to point to examples in the data of choices that would come from some sort

of price-insensitive decision rule or heuristic and which would, for coherently consistent

subjects, be relatively straightforward to extend in more complicated pricing schemes. Ar-

bitrarily consistent subjects, whose choices we know to be more sensitive to relative price

changes in the simplified linear pricing scheme, demonstrate far fewer of these examples

and may find it harder in a complicated non-linear price context to maintain the same

price-responsive decision rules that they had previously implemented. This interpretation

is further supported by the observation that arbitrarily consistent (but not coherently

consistent) subjects spend significantly more time per decision in the kinked treatment

than in the linear treatment, suggesting the added complexity of the kinked budget sets

31Namely, when the price ratio goes from greater than 1 to 1 and when it goes from 1 to less than 1.
For any change that leaves the pre and post price ratios above 1 or, alternatively, leaves them both below
1, the demand ratio is invariant to the price change, being effectively 0 or infinity.

32In fact, put more starkly, in the linear treatment, approximately 30% of all Type 5 subjects make
choices mostly at the most lucrative intercept (with 20% choosing this 90% of the time or more), while
just 1.5% of Type 4 subjects do. Relatedly, regarding our other referenced simple decision rule, in the
linear treatment, approximately 15% of Type 5 subjects make choices mostly on the 45 degree line, while
0% of Type 4 subjects do.
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indeed requires more processing time for these types in particular, as would be expected

if they are struggling (and then failing) to implement a more sophisticated decision rule

in this more complex setting.

While this is our preferred interpretation, it is worth considering alternative explana-

tions of the findings inspired by the literature. One natural explanation of the findings

is that Type 4 behavior differs across treatments because subjects choose the kink point

due to its salience. Two facts dispel this potential mechanism. First, choice plots such as

those in Figure 2 show that subjects do not as a rule switch to choosing the kink point,

with many choices made off the kink.33 Second, the design of the experiment allows us to

compare kinked sets that contain the choice the individual made in the linear set. We use

these observations to more formally test whether behavior moves toward the kink point

from the point of the linear choice. To compare decisions across budgets with different

prices, we consider the fraction of the allocation that is allotted to the security with the

lower price (i.e., the relatively cheap security). The share of the cheap security at the

kink point is always larger than this share at the point chosen by the subject in the linear

set since the kinked set was generated by removing a section of the axis with the cheaper

security (see Section 1) and we only consider kinked sets that contain the choice the indi-

vidual made in the linear set. If it were the case that the kink point had some sort of pull

on subjects’ tastes due to its salience, we would then see this share increase in the kinked

case relative to the linear case. Figure 9 presents the distributions of the shares allotted

to the cheap security for decisions in which the choice made by the subject in the linear

treatment is available in the kinked treatment derived from that linear budget. First, we

note that the figure shows that only a very small share of the decisions are under one-half,

meaning very few of these choices were stochastically dominated. Moreover, a KS test

of the distributions in the kinked and linear case shows that the two distributions are

not statistically different for subjects overall or, critically (for the purposes of ruling out

this particular alternative explanation), for Type 4 subjects in particular. Individuals do

33Choices at the kink may be rational and not just due to salience: for instance, an individual max-
imizing expected value would be expected to deviate from the most lucrative intercept when facing a
kinked budget set where the angle of the kink includes the price ratio of -1.
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Figure 9: Allocation Share of Cheaper Security

Notes: The figure presents the distribution of the shares allotted to the cheaper security (as defined by the
initial linear treatment’s relative prices) out of the total shares allotted to both securities for all decisions
in which the choice made by the subject in the linear treatment is available in the kinked treatment
(the distribution for these linear treatments is in blue and that for their associated kinked treatments
in red). KS test/t test p-values are presented within each panel for the test of the null of no differences
between the blue and red distributions/means, respectively, in each panel (with the left panel containing
all subjects, the middle panel Type 4 subjects, and the right panel Type 5 subjects).

not experience enough gravitational pull toward the kink point to cause them to deviate

from a previously preferred choice for some “salience” reward, which constitutes evidence

contrary to the hypothesis that choices are more likely to be made at the kink due to its

salience.

Readers familiar with the literature on heuristics in the face of marginal tax schedules

may wonder if the behavior of arbitrarily consistent subjects can be explained by the

“ironing” heuristic. Under this heuristic, posited by Liebman and Zeckhauser (2004), an

individual in effect averages a set of marginal price schedules (each applying at different

points in the commodity space range) and then acts upon this average price regardless
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of the marginal price actually at play. Rees-Jones and Taubinsky (2016) show that a

large fraction of taxpayers linearize the marginal income tax schedule in this way (see

also Gideon (2014) and Ito (2014) for additional empirical evidence of this heuristic). In

our case, one possibility is that rather than changing their preferences between the linear

and kinked treatments, arbitrarily consistent subjects do indeed have a stable preference

relation but employ it over a misperceived “ironed” price schedule in the kinked treatment.

This could make choices appear as if they are being determined by different, inconsistent

decision rules applied to the actual marginal prices (when in fact the decision maker

is applying the same rule to the actual price schedule in the linear treatment and to a

misperceived ironed price schedule in the kinked treatment). We can test for supporting

evidence for this hypothesis by performing our estimation procedure using the actual

kinked choices observed but treating them in the maximization procedure as if they are

associated with an ironed, linearized price schedule that averages the actual marginal

price schedules defining any given kinked budget set.34 If we believe that the choice made

lies on a budget constraint that takes the ironed price ratio (again, derived by averaging

the two actual marginal price ratios forming the kinked budget set) as the perceived price

ratio and that preferences are the same as in the linear setting, then we would expect to

see similar elasticities with respect to the ironed linearized price for arbitrarily consistent

subjects as we do in the linear setting. However, as Figure 10 makes clear, the distribution

of elasticities for these Type 4 individuals under this ironing assumption does not at all

resemble the elasticity distribution derived from the actual linear setting. We take this

evidence as inconsistent with the ironing hypothesis explaining our findings (though it

may explain behavior in other kinked budget settings).

A final alternative explanation for the findings that we consider is that Type 4s may be

distinguished from Type 5s by a greater propensity to make choices violating first-order

stochastic dominance (FOSD). However, the overall pattern of HM violations within and

across treatments and the ratio of Type 4 to Type 5 individuals in the population is

34Specifically, we compute an average price ratio that is the simple average of P 1
x/P

1
y for segment 1

of the kinked budget constraint and P 1
x/P

1
y for segment 2, then run a budget with this averaged slope

through the actual choice made and estimate preferences and elasticities with the procedure described in
Appendix C on the basis of all paired choice and averaged price combinations in the kinked treatment.
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Figure 10: Elasticities with Ironing Assumption
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Notes: The figure presents, for the arbitrarily consistent group (Type 4s), the CDF of the per-person
mean elasticity derived from structural estimation of the linear treatment (in blue), described in Section
5.1, and a similar structural estimation where the maximum likelihood estimation uses the observed
choices in the kinked treatment but treats them as if they are associated with a linearized price schedule
that averages the actual marginal price schedules that define any given kinked budget set (in yellow),
as a consumer employing an ironing heuristic might do. KS test/t test p-values are presented within
each panel for the test of the null of no differences between the linear and ironed distributions/means,
respectively, in each panel (with the left panel containing all subjects, the middle panel Type 4 subjects,
and the right panel Type 5 subjects).

not meaningfully altered when we drop the FOSD violations for each individual and

then determine the HM violations and resulting type assignment on the remaining set.

Specifically, the HM violations within each treatment still indicate high levels of internal

consistency with markedly different (and less consistent) choices made for the pooled

observations across treatments. Similarly, the resulting type distribution is still populated

with mostly Type 4s and Type 5s, with the figure showing strictly more of the former

for a critical value of 6 or less, as in our baseline analysis. Once we remove the FOSD

violations, 72% of the population is categorized as a Type 4 and 23% as a Type 5—with

almost no subjects classed as Type 1, Type 2, or Type 3.35 These results show that

FOSD violations do explain part of the type distribution, namely, the part corresponding

to subjects who fail to show consistency in at least one of the treatments. Excluding

such violations does not change the ratio of the remaining types, with Type 4 subjects

35See Figures 17–19 and Table 16 in Appendix F of the Supplementary Online Material.
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outnumbering Type 5 subjects by a rate of about 3 to 1, as in our baseline analysis. We

thus conclude that this alternative also has little to offer in terms of an explanation for

our main findings.

5 Consequences for Economic Analysis

The results of this experiment have several important consequences for economic analysis.

First, we show that for the overwhelming majority of individuals, behavior in the kinked

treatment is rational and consistent with the maximization of some utility function—an

untested assumption in previous studies. This finding tells us that even if individuals in

non-linear budget constraint settings act out of step with past behavior in linear settings,

we should be hesitant to conclude that they are failing to optimize; rather, they may still

be acting in a way that is consistent with some underlying preference relation. Economists

should thus show caution in ascribing irrationality to individual behavior in such settings.

Second, the fact that half of our experimental subjects change their maximizing behav-

ior even with full information means that a lack of information is not the only explanation

of why behavior in nonlinear settings differs from that in linear settings. Information pro-

vision interventions that seek to help individuals understand complex incentive schemes

(e.g., Jones, 2010; Chetty and Saez, 2013) are common and powerful. However, our re-

sults suggest that they may also have natural limitations and that we should not expect

information alone to harmonize behavior across these disparate incentive settings. In

fact, our findings indicate a context-dependent switch in decision-making rules and re-

sulting behavior (especially for price-sensitive subjects), suggesting a renewed importance

for behavioral models that incorporate features of the environment and, critically, the

complexity of the choice setting in determining choice.36

In this vein, special discussion is in order regarding related work on the effects of in-

centive complexity. Abeler and Jäger (2015) show that experimental subjects facing more

36Simon (1956) is a notable early proponent of the view that to understand human behavior, one
must understand both the environment and the decision maker. Recent related works include Caplin et
al. (2011), which employs a satisficing model to explain search behavior, and Kőszegi and Szeidl (2012),
which uses the degree of difference between attributes in a choice set to predict behavior, and Reck (2016)
which studies the welfare effects of debiasing.
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complex lab-designed tax and subsidy schemes under-react to changes in taxes vis-a-vis

those facing simpler schemes containing equivalent tax changes. Like these authors, we

demonstrate that behavior under more complicated incentive structures fundamentally

differs from behavior under less complicated incentive schemes. What is striking is that

while in Abeler and Jäger (2015), the complex incentive scheme is very complex (pre-

sented in a full page of 22 tax and subsidy rules that change depending on the range of

experimental output), in our case, the non-linear incentive treatment is about as simple a

deviation from a uniform price as possible (a single kink) and is presented transparently

with a graphical interface and its built-in calculators. Still, this very minor addition of

complexity to the incentive structure is enough to significantly change the underlying pref-

erences and behavioral responsiveness to prices of half the population. Moreover, while

Abeler and Jäger (2015) find that the under-reaction in the complex incentive scheme is

sub-optimal relative to what would be payoff-maximizing (and their experiment is not

designed with the intent of comparing a payoff-maximizing objective with subjects’ ac-

tual utility function maximization), we can show that even though added complexity in

the kinked incentive scheme does change behavioral price responsiveness, this change can

still be characterized as optimal behavior for some utility function. Unlike the previous

authors, we also find that the change that the complex incentive scheme brings out in an

individual, while large in magnitude, can either be a large decrease or a large increase in

behavioral responsiveness (in our case measured in terms of price elasticity), depending

on the individual.

A third implication of our work relates to this consequence of incentive complexity.

Policy makers should be cognizant of the fact that “kink-ifying” incentive schedules—in

spite of the rationales for doing so—can fundamentally affect individuals’ decision rules,

measures of price responsiveness, and therefore the size of the behavioral distortions that

an individual exhibits. In our sample, arbitrarily consistent subjects who increase their

elasticity in response to a kinked budget set are offset by arbitrarily consistent subjects

who decrease their elasticity in the very same circumstance. Even though we do not find a

significant change in the average elasticity, the individuals who change their decision rules
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would experience welfare losses under the preferences revealed in the linear setting. While

in our setting there is no average change in elasticity, population average elasticities in

other settings may increase or decrease, depending on the context. The choice to “kink-

ify” an incentive schedule may then impact not only individual behavioral responsiveness

but also aggregate population elasticities by making the population increase or decrease

its average price responsiveness, which may impact the efficiency cost of alternative linear

and non-linear tax schedules.

Finally, we note that the results in this paper also have consequences for a recent liter-

ature that uses marginal responses at points where marginal incentives are discontinuous

to estimate features of demand and supply functions. Saez (2010), in his influential work

in this area, notes that the fraction of individuals who locate, or bunch, at kink points in

the income tax schedule is proportional to the elasticity of reported income with respect

to the net of tax rate and proposes an estimator of this elasticity based on this fraction.

A natural question to ask, then, is the following: what does arbitrary consistency mean

for the bunching estimator-derived elasticities? The implications of our work in this do-

main are twofold. First, we note that consistent behavior is necessary for this method

to be valid, as it depends on maximizing behavior for valid estimates. Our findings thus

validate this assumption. Second, arbitrary consistency casts doubt on the comparability

of kink-design estimates (bunching estimator derived or otherwise) and estimates derived

from choices made under linear budgets, as the two might be estimating features of dif-

ferent demand/supply functions. This point is of particular importance to policy makers

seeking to make use of empirically validated elasticities in their policy formation (e.g., in

tax simulation models employing measured taxable income elasticities or macroeconomic

models utilizing estimated labor supply elasticities). In the context of labor responses, for

instance, taking elasticities estimated from environments with linear budget constraints

and applying them to non-linear environments (or vice versa) may lead to significant

forecasting errors.37

37For example, estimating labor supply responses using changes in Social Security taxes (which for most
workers are in effect a linear tax) or the large experimental lab labor literature (which often models taxes
as flat taxes and derives labor supply elasticities with changes to the slope) may lead to inappropriate
conclusions about worker responsiveness to a progressive income tax schedule.
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6 Conclusion

This paper describes the first experiment to assess the rationality of individuals facing

non-linear budgets. In the experiment, we elicit a large number of individual decisions

using the graphical budget set toolkit of Choi et al. (2007b) extended to include non-

linear budget sets. The analysis reveals several novel results. First, individual measures

of rationality under kinked sets are found to display very similar aggregate patterns to

those under linear budget sets, with a large majority of participants exhibiting consistent

behavior over choices in each setting. Second, half of subjects exhibit behavior that,

while rational in both treatments, is not consistent with a common decision rule across

treatments, implying that they behave in an arbitrarily consistent manner and maximize

different utility functions across treatments. Third, individuals who change their decision

rules with the move to the kinked budget set environment are characterized by large shifts

in estimated utility parameters, risk premiums, and price elasticities (in comparison to

individuals who act consistently across budget environments, whose associated values are,

as expected, essentially unchanged). Fourth, we reject prima facie explanations for this

finding such as consumer irrationality and the ironing hypothesis, among others. We

instead present evidence suggesting that the findings can be explained by rational actors

responding to increased price complexity by shifting their decision rules. Interestingly, we

find that those who implement less sophisticated, less price-responsive decision rules to

begin with are less likely to change decision rules in more complex environments.

Finally, the results have important policy implications. For one, they suggest that

caution is warranted in applying individual-level behavioral elasticity estimates derived

from linear settings to non-linear settings (and vice versa). Such a finding is of particular

note to those attempting to generalize from the large and varied literature on empirical and

experimental labor supply estimates, demand estimations, and taxable income elasticity,

among others. Additionally, the findings suggest that policy makers should appreciate

how the choice to “kink-ify” an incentive schedule can fundamentally change revealed

preferences, individual price responsiveness, and therefore the size of resulting behavioral

distortions.
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While the experimental setting allows control and inference not possible outside the

lab, it does so within a particular decision context. It is unknown how the experimental

findings might extend to other non-linear settings, such as choices over effort and leisure

or between commodity bundles chosen with certainty. Extending the analysis to these

additional decision margins while continuing to decouple confounding issues related to

information and adjustment costs from incentive complexity in these other contexts is

thus an important avenue for future work.
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This online appendix includes the experiment instructions in Appendix A, details on

the procedure to benchmark our test of rationality in Appendix B, and details on the

structural estimation in Appendix C. Our online supplementary appendix includes ad-

ditional material and be found here www.jcsuarez.com/Files/Kinks_Supplementary_

Appendix.pdf.
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Sample instructions 

Introduction 

This is an experiment in decision-making. Research foundations have provided funds for 
conducting this research. Your payoffs will depend only on your decisions and on chance. It will 
not depend on the decisions of the other participants in the experiments. Please pay careful 
attention to the instructions as a considerable amount of money is at stake. After you read this 
part of the instructions, it will also be read aloud by the instructor, and you may also ask any 
questions. 

The entire experiment should be complete within an hour and a half. At the end of the 
experiment you will be paid privately. At that time, you will receive $5 as a participation fee 
(simply for showing up on time). Details of how you will make decisions and receive payments 
will be provided below.  

During the experiment we will speak in terms of experimental tokens instead of dollars. 
Your payoffs will be calculated in terms of tokens and then translated at the end of the 
experiment into dollars at the following rate: 

3 Tokens = 1 Dollar 

Your participation in the experiment and any information about your payoffs will be kept 
strictly confidential. Each participant will be assigned a participant ID number. This number will 
be used to record all data. Only the Xlab administrator but not the experimenter will have both 
the list of participant ID numbers and names.  

Please do not talk with anyone during the experiment. In order to keep your decisions 
private, please do not show your choices to any other participant. We also ask everyone to 
remain silent until the end of the experiment. At the end of the experiment you will be paid 
privately according to your participant ID number.  

This experiment consists of two parts. At the end of Part I you will be given the instructions 
for Part II.  

Part I 

In this part of the experiment, you will participate in 50 independent decision problems that 
share a common form. This section describes in detail the process that will be repeated in all 
decision problems and the computer program that you will use to make your decisions. 

In each decision problem you will be asked to allocate tokens between two accounts, labeled 
x and y. The x account corresponds to the x-axis and the y account corresponds to the y-axis in a 
two-dimensional graph. Each choice will involve choosing a point on a line representing possible 
token allocations. Examples of lines that you might face appear in Attachment 1.  
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In each choice, you may choose any x and y pair that is on the line. For example, as 
illustrated in Attachment 2, choice A represents a decision to allocate q tokens in the x account 
and r tokens in the y account. Another possible allocation is B, in which you allocate w tokens in 
the x account and z tokens in the y account. 

Each decision problem will start by having the computer select such a line randomly from 
the set of lines that intersect with at least one of the axes at 50 or more tokens but with no axis 
exceeding 100 tokens. The lines selected for you in different decision problems are independent 
of each other and of the lines selected for any of the other participants in their decision problems.  

To choose an allocation, use the mouse to move the pointer on the computer screen to the 
allocation that you desire. When you are ready to make your decision, left-click to enter your 
chosen allocation. After that, confirm your decision by clicking on the Submit button. Note that 
you can choose only x and y combinations that are on the line. To move on to the next round, 
press the OK button. The computer program dialog window is shown in Attachment 3. 

Your payoff at each decision round is determined by the number of tokens in your x account 
and the number of tokens in your y account. At the end of the round, the computer will randomly 
select one of the accounts, x or y. It is equally likely that account x or account y will be chosen. 
You will only receive the number of tokens you allocated to the account that was chosen. 

Next, you will be asked to make an allocation in another independent decision. This process 
will be repeated until all 50 rounds are completed. At the end of the last round, you will be 
informed the first part of the experiment has ended.  

Your earnings for this part of the experiment will be determined as follows. At the end of 
the experiment, the computer will randomly select one decision round to carry out (that is, 1 out 
of 50) for payoffs. The round selected depends solely upon chance. For each participant, it is 
equally likely that any round will be chosen.  

For example, suppose that in the round the computer chose to carry out for payoffs, you 
chose allocation A, as illustrated in Attachment 2, and that the computer chose account y for you 
in that round. In that case you would receive r tokens in total. Similarly, if the computer chose 
account x for you in that round then you would receive q tokens in total. If you chose allocation 
B and the computer chose account y you would receive z tokens in total, and if the computer 
chose account x then you would receive w tokens in total. 

At the end of the experiment, the tokens will be converted into money.  Each token will be 
worth 0.33 Dollars. You will receive your payment as you leave the experiment.  

If there are no further questions, you are ready to start. At the end of this part of the 
experiment, you will receive further instructions. 
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Part II 

This part of the experiment employs the same experimental computer program. In this part 
of the experiment, you will also participate repeatedly in 50 independent decision problems that 
share a common form. This section describes in detail the differences between the two parts of 
the experiment. After you read this part of the instructions, it will also be read aloud by the 
instructor, and you may also ask any questions. 

In each decision problem you will again be asked to allocate tokens between two accounts, 
labeled x and y. The x account corresponds to the x-axis and the y account corresponds to the y-
axis in a two-dimensional graph. Once again, each choice will involve choosing a point 
representing possible token allocations.   

Again, each choice will involve choosing a point on a graph representing possible token 
allocations. The x-axis and y-axis are again scaled from 0 to 100 tokens. In each choice, you may 
choose any allocation that is on the kinked-shaped lines. Examples of lines that you might face 
appear in Attachment 4.  

Each decision problem will start by having the computer select such a kinked-shaped line 
randomly. That is, the lines selected depend solely upon chance and it is equally likely that you 
will face any kinked-shaped line. The lines selected for you in different decision problems are 
independent of each other and of the lines selected for any of the other participants in their 
decision problems.  

Recall that to choose an allocation, use the mouse to move the pointer on the computer 
screen to the allocation that you desire and click on your chosen allocation. Examples of possible 
choices appear in Attachment 5. For example, suppose that in the round the computer chose to 
carry out for payoffs, you chose allocation A, as illustrated in Attachment 5, and that the 
computer chose account y for you in that round. In that case you would receive q tokens in total. 
Similarly, if the computer chose account x for you in that round then you would receive r tokens 
in total. If you chose allocation B and the computer chose account y you would receive z tokens 
in total, and if the computer chose account x then you would receive w tokens in total. 

    In this part of the experiment, the method of determining payment is the same as in the 
previous part. Recall that in each round it is equally likely that account x or account y will be 
chosen. Once again, at the end of this part of the experiment, the computer will randomly select 
one of the fifty decision rounds from each participant to carry out for payoffs. You will receive 
your payment for this part of the experiment, together with your payment for the previous part, 
and the $5 participation fee, as you leave the experiment. 
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B Benchmark Randomization and Type Taxonomy

This appendix presents the results of the benchmarking procedure used to determine the

critical values for categorizing rationality types. We closely follow the methods of Choi et

al. (2007a). We start with an individual whose behavior is determined by maximization

of a CRRA (ρ set to 0.5, following Choi et al. (2007a)) expected utility function subject

to logistic taste shocks, where the relative importance of the taste shock is determined by

parameter γ (if γ = 0, the decisions are purely random, while when γ →∞, the decisions

are purely the result of expected utility maximization by a rational agent). For each

panel presented in the the first four figures in this appendix, we simulate 1300 subjects

with these tastes for each combination of γ and n (the number of choice observations per

subject) that we use.38 The figures then plot the resulting distributions of the HM measure

for each case, with Figure 11 showing the HM distributions derived from maximization

subject to linear constraint sets and Figure 12 showing the HM distributions derived from

kinked constraint sets.

In the first panel of Figures 11 and 12, we consider decision makers whose choices are

completely random (γ = 0) and assess how the resulting distributions of the HM measure

change as the number of observations increases. The results indicate that a larger number

of decisions increases the statistical power to detect whether a set of data was generated

by pure randomization, as is to be expected. Moreover, 50 decisions (n = 50) give us

significant power against the weak hypothesis of pure randomization. Note that draws of

50 observations are just as powerful for the case of linear budget sets as for the case of

kinked budget sets.

Stronger hypotheses can be formulated by comparing the experimental data to ex-

pected utility maximization subject to a random taste shock determined by non-zero γ

values. For each combination of n and γ, one can test the null hypothesis that the ob-

served behavior and resulting HM measure come from a distribution of individuals whose

maximizing behavior is modulated with a degree of random shocks defined by level γ.

38Each of the choice observations from a simulated subject come from a scenario with a randomly
generated budget set that is generated in the same way as those faced by the actual decision makers in
our experiment.
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The bottom panels of Figures 11-12 show the distributions (for n = 50 observations) in

each budget context for differing degrees of γ. For instance, if one wanted to test the

hypothesis of consistency equivalent to that from a distribution that has γ = 5 at the

95% level, one would compare the value of the HM score with the critical value 6. An

HM score greater than 6 leads one to conclude that γ < 5 at the 95% confidence level

or, equivalently, that the observed behavior is less rational, or consistent, than would be

the case for 95% of a population that maximizes utility with only a moderately sized

random taste shock. An individual with an HM greater than 6 would thus be said to be

less consistent, with a 95% confidence level, than would be expected from individuals who

only occasionally allow deviations from an otherwise rational CRRA utility maximiza-

tion due to a moderate (γ = 5) random logistic taste shock. Similarly, for a somewhat

higher standard of rationality (γ = 10), 4 HM removals becomes the critical value (i.e.,

an individual with an HM greater than 4 would thus be said to be less consistent, with

a 95% confidence level, than would be expected from individuals who only occasionally

allow deviations from an otherwise rational CRRA utility maximization due to a random

logistic taste shock with parameter γ = 10).

Table 2 (in the main text) shows the type distribution using the critical value of 4.

Individual type assignments using this critical value can be seen in Table 3. Figure 4 (in

the main text) explores the robustness of the type distribution to the choice of critical

value. Importantly, the proportion of Type 4s remains quite large as the critical value

deviates from 4. The proportion of Type 5s increases as the critical value increases. This

increase is due mostly to the decrease in Type 1s, Type 2s, and Type 3s. This is purely

a mechanical effect of lowering the bar of rationality.
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Figure 11: HM Randomization Results (Linear)
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Figure 12: HM Randomization Results (Kinked)
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Table 3: Individual Type Listing

Session 1 Type Session 2 Type Session 3 Type Session 4 Type
101 4 201 3 301 4 401 5
102 1 202 2 302 4 402 4
103 4 203 4 303 1 403 1
104 3 204 3 304 5 404 4
105 4 205 4 305 2 405 4
106 3 206 3 306 4 406 2
107 4 207 4 307 2 407 1
108 2 208 3 308 4 408 4
109 4 209 4 309 3 409 4
110 5 210 1 310 4 410 2
111 4 211 4 311 5 411 5
112 5 212 3 312 2 412 2
113 5 213 4 313 2 413 2
114 4 214 3 314 4 414 1
115 4 215 4 315 2 415 4
116 3 216 5 316 5 416 1
117 2 217 4 317 4 417 3
118 5 218 3 318 3 418 4
119 4 219 4 319 4 419 3
120 4 220 4 320 4 420 2
121 5 221 3 321 1 421 1
122 2 222 4 322 5 422 4
123 1 223 1 323 4 423 4
124 4 224 5 324 1 424 5
125 4 225 4 325 4 425 5
126 4 226 1 326 4 426 1
127 4 227 4 327 5 427 1
128 5 228 4 328 4 428 1
129 4 229 4 329 3 429 4
130 4 230 4 330 4 430 2
131 3 231 4 331 5 431 4
132 1 232 1 332 4 432 4
133 5 233 3 333 2 433 2
134 4 234 4 334 4 434 1

235 2 335 2 435 5
236 3 336 4 436 4
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C Parametric Estimation

Moffitt (1990) discusses difficulties in estimating models with kinked budget sets. An

advantage of our setting is that the experiment generates random variation in the size

and location of the kink. Our parametric estimation in the linear and non-linear settings

builds upon Choi et al. (2007a). Like them, we estimate the following disappointment

aversion utility function from Gul (1991) with the inclusion of a multiplicative stochastic

component:

min {αu(x)eε1 + u(y)eε2 , u(x)eε1 + αu(y)eε2} (2)

where the function u(x) has the CRRA form u(x) = x1−ρ

1−ρ . We specify in this Appendix

the NLLS problem—which forms the basis for the structural estimates used throughout

the paper—for the estimation in the kinked treatment case (as the estimation of the

linear treatment is included as a special case). Furthermore, for exposition purposes, we

illustrate the case where the kink point is to the left of the 45 degree line. The opposite

case requires a trivial symmetric modification.

To start, denote the price ratio pix/p
i
y for the lines to the left and right of the kink

point by p1 and p2, the kink point by log(yik/x
i
k) = Ki, and ε = ε1 − ε2. As boundary

observations are not well defined with the power function, we incorporate them (following

Choi et al. (2007a)) by replacing the zero component of a boundary choice with a very

small consumption level such that the ratio of choices (xi/yi) is truncated to be between

ω and 1/ω, where ω = 0.001. A decision maker with preferences determined by equation

(1) who faces a kinked budget set (defined by prices (pi1, p
i
2) and kink point Ki) will have

their optimal choice (xi∗, yi∗) determined by the following log demand ratio schedule39:

39Accounting for the multiplicative stochastic component in (2) results in an additive error term ε in
the log demand ratio expressions and underlies the criterion function minimized in (3) via NLLS.
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log(xi∗/yi∗) = f(log(pi1), log(pi2), Ki;α, ρ) =



log(ω) for − ρ log(ω) ≤ log(pi1)− log(α)

− log(pi1)− log(α)

ρ
for ρKi < log(pi1)− log(α) < −ρ log(ω)

− log(yik/x
I
k) for log(pi1)− log(α) < ρKi < log(pi2)− log(α)

− log(pi2)− log(α)

ρ
for 0 < log(pi2)− log(α) < ρKi

0 for log(pi2)− log(α) < 0 < log(pi2) + log(α)

− log(pi2) + log(α)

ρ
for ρ log(ω) < log(pi2) + log(α) < 0

− log(ω) for log(pi2) + log(α) ≤ ρ log(ω)

Then, for each subject, we choose the parameters α, ρ to minimize:

50∑
i=1

(log(xi/yi)− f(log(pi1), log(pi2), Ki;α, ρ))2 (3)

using NLLS with standard errors computed using a robust variance estimator. Tables

19-26 in Appendix G of the Supplementary Online Material present the estimates (α̂, ρ̂)

that result for each individual in each of the linear and kinked treatments. In Section E.2

of this Appendix, we go into greater detail about some of the finer points and particulars

of the estimation procedure that generates these tables, but before that, in Section E.1,

we discuss the rationale for our use of the NLLS estimation strategy.

C.1 Choice of Estimation Strategy

Non-linear least squares estimation was chosen over maximum likelihood estimation (MLE)

for two reasons.40 First, NLLS more accurately recovers structural parameters for simu-

40The MLE estimator comes about from the maximization problem for an individual with utility defined
by equation (2), which yields the following conditions used to define the log-likelihood function (with the
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lated subjects, especially as the variance of the stochastic component increases. We gen-

erated the simulated subjects using the utility function in (2) with ε ∼ N(0, σε) for a suite

of structural parameter combinations (α, ρ) (which span the plurality of the structural

parameters estimated in the data). We randomly choose 50 linear and 50 corresponding

kinked budget sets from the actual budget sets offered to subjects in the study and then

simulated the choices that 100 simulated subjects would make in each budget set as dic-

tated by their assumed parameter values and the specified error-generating process. Using

these choices, we could then reverse engineer (with either NLLS or MLE) a recovery of

the implied structural parameters that would be expected to generate the choices of each

of the simulated subjects, calculate the average of these estimated structural parameters,

and then compare them to the average of the true values that generated the choices.

For small values of σε (0.01), both MLE and NLLS perform similarly well, judged by a

log price ratio defined as p and other terms defined as above):

p ≥ logα+ ρ log(1/ω) + ε for x/y = ω

p = logα+ ρ log(y/x) + ε for ω < x/y < 1

− logα+ ρ log(y/x) + ε ≤ p ≤ logα+ ρ log(y/x) + ε for x = y

p = − logα+ ρ log(y/x) + ε for 1 < x/y < 1/ω

p ≤ − logα+ ρ log(ω) + ε for x/y = 1/ω

For the equality conditions, the probability that ε satisfies that relation is well defined. The inequality
conditions characterize an interval of values that ε can take to satisfy that relation. Denoting by φ and
Φ the normal PDF and CDF, respectively, of the error term’s distribution (mean zero with variance σ),
the log-likelihood function is given by:

L =
∏

for xi/yi=ω

Φ[p− logα− ρ log(1/ω)]

×
∏

for ω<xi/yi<1

φ[p− logα− ρ log(yi/xi)]

×
∏

for xi=yi

[Φ[p+ logα]− Φ[p− logα]]

×
∏

for 1<xi/yi<1/ω

φ[p+ logα− ρ log(yi/xi)]

×
∏

for xi/yi=1/ω

[1− Φ[p+ logα− ρ log(ω)]]

The maximum likelihood estimators (α̂MLE , ρ̂MLE , σ̂MLE) are then the parameters that maximize this
log-likelihood function.
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comparison of the average recovered structural parameter value and the average of the

actual structural parameters used. However, increasing σε even slightly (e.g., to 0.1 or

higher; for reference, the average estimated σ found in the data is significantly greater

than that for both MLE and NLLS) makes the NLLS estimation perform markedly better

than MLE in recovering parameters. In particular, NLLS is better able to recover more

extreme structural parameters for both the linear and non-linear budgets. Tables 17 and

18 in Appendix G of the Supplementary Online Material contain the tests for σε = 0.1.

Moreover, the ability of NLLS to recover these parameters is not significantly impacted

by the linearity of the budget, dovetailing with our second rationale for preferring NLLS

detailed below.

The second reason NLLS estimation is preferred over MLE estimation is that the

former appears to be less susceptible to bias in the parameter estimates that comes

about strictly from switching from estimating choices over linear budget sets to estimat-

ing choices over non-linear budget sets. Structural parameters are notoriously difficult

to estimate using choices on non-linear budgets, and as we are particularly interested in

identifying actual changes in structural parameters that result from a shift from linear

to non-linear budget settings, we want to guard against differences in parameter esti-

mates coming about solely because the estimation method itself leads to changes when

applied to linear vis-a-vis non-linear budget settings (without there being any actual

change in the structural parameters). To further assess whether NLLS/MLE estimation

on non-linear budgets accurately recovers parameters without a bias in comparison to

the parameters recovered for linear budgets, we translate subjects’ linear choices on lin-

ear budgets into choices on pseudo-non-linear budgets with an imposed pseudo-kink and

then use NLLS/MLE to recover the parameters in both scenarios. Specifically, we take

participants’ budgets and choices from the linear treatment and add the pseudo-kink by

randomly choosing a point between the riskless point (the 45 degree line intersection with

the budget set) and the corner of the cheaper asset and classify it as the kink point Ki

above (though it does not in fact represent any actual convexity in the budget line). We

then apply the non-linear budget set variation of NLLS and MLE to this budget with
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“kink” Ki to ensure that the same parameters are recovered with this method as with

the linear budget set variation of NLLS and MLE (as they should be given that there is

no actual change in the data-generating process). NLLS succeeds in this regard, while

MLE fails. In particular, MLE biases the ρ values toward zero when non-linearizing linear

budgets and choices.

C.2 Computational Particulars of the Estimation Strategy

We now address several particulars of our NLLS estimation strategy. First, to avoid

arriving at a local minimum, we use a variety of initial parameter conditions to seed our

NLLS optimization algorithm. In particular, for linear budget sets, three α values are

used as initial guesses: the largest and smallest values of the relative prices offered to

an individual and the average of the two.41 Additionally, two ρ parameters are used as

initial guesses, 0.5 and 1.5. Together, this creates a 3x2 matrix with six potential initial

conditions. For the non-linear budgets, these six initial guesses are used and then the

estimated structural parameters from the linear budget sets of each participant are used

as a seventh initial guess. The program iterates through the initial guesses, performing

a kind of branch-and-bound algorithm, keeping the estimated structural parameters that

minimize the loss function.

Second, due to data limitations, for each participant, the estimation of α is capped

at the largest value among the set of offered price ratios (pix/p
i
y) and their inverse. To

illustrate why this is necessary, suppose that a participant’s true α is 4.5 but that the

largest value of the price ratio (pix/p
i
y) or its inverse that they is ever offered is 4. This

participant would choose the riskless asset for every budget he or she is offered (see the

fifth line of the log demand function log(xi∗/yi∗) defined above to see this), and thus

any value of α ≥ 4 would be consistent with their choices, but estimating α > 4.5

would be inconsistent with the true α. To discipline the model, we minimize the loss

function under the constraint that α cannot exceed the maximum of (pix/p
i
y) or (piy/p

i
x)

41This maximum and minimum of the relative prices offered are the maximum and minimum values
(across all 50 budget sets) of the ratio of the commodity with the higher price (for a given budget set) over
the commodity with the lower price (for the same budget set). See the second point in this subsection
for why this range bounds alpha.
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offered to the participant (as would be expected given the randomization procedure for

assigning budget constraints, there is no significant difference in the distribution of these

maximum prices across types). In essence, data limitations restrict what can be known

about subjects’ structural parameters. Importantly, the maximum prices in the linear

and non-linear budgets differ, with the non-linear budgets having larger maximum prices

by construction. Thus, after estimating α for the non-linear budget, we restrict it to not

exceed the α constraint from the linear budgets; otherwise, the α values would be biased

when we compare the structural parameters across the linear and non-linear treatments.

Third, choices at or near the riskless point on the budget are reclassified. The struc-

tural estimation is sensitive to small deviations around the riskless point on the budget

curves. For example, suppose a participant chooses the point (xi, yi) = (33.5, 33) for a

linear budget (xMax, yMax) = (50, 100). While this choice is close to the riskless point of

the budget, the participant has chosen a higher portion of the expensive good, resulting

in an upward-sloping demand curve. Moreover, suppose a participant chooses the point

(xi, yi) = (33.3, 33.4) for the same linear budget (xMax, yMax) = (50, 100). While this

choice is consistent with a downward-sloping demand curve, the deviation from the pure

riskless choice of (xi, yi) = (33.33, 33.33) could be due to price sensitivity or computational

rounding of choices to the nearest tenth place when subjects are offered choices. Addition-

ally, subjects may be myopic when making decisions around the riskless point, perceiving

(xi, yi) = (33.3, 33.4) and (xi, yi) = (33.33, 33.33) as negligibly different choices (on the

visual interface, they appear very much the same). The structural estimation procedure,

on the other hand, treats these alternative choices as fundamentally different, with the

potential to markedly change the estimated parameters. Thus, to be conservative about

subjects’ price sensitivity, we reclassify all choices such that |xi− yi| ≤ 1 as if they are at

the riskless point, xi = yi, on the linear and non-linear budgets.

Fourth, extreme outliers are removed from the structural estimation using quartile

outlier detection. As noted in Choi et al. (2007a), the structural estimation is sensitive

to outliers. This sensitivity is especially pronounced for participants with a majority of

points around the riskless point of each budget. To make our estimation robust to extreme
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outliers in a formal and non-ad hoc manner, we employ quartile outlier detection, an

outlier detection method used for choices that are not distributed normally (Hodge and

Austin, 2004; Rousseeuw and Hubert, 2011). Specifically, we calculate the interquartile

region of the absolute value of the log choice ratio iqr = | log(xi/yi)|.75 − | log(xi/yi)|.25

for each subject and remove all choices that exceed 20iqr below the lower quartile or

20iqr above the upper quartile of choices from the structural estimation. This process is

performed on both the linear and non-linear treatments separately. This large band was

chosen to identify choices that seem to be outliers (e.g., see ID 220) but to not remove

choices for other participants whose extreme choices may result from dramatic changes

in prices. For instance, if a participant’s true structural parameters were a large value

of α and a zero value of ρ, a utility-maximizing subject would pick the riskless point of

the budget for prices below a certain α and the corners for prices above α. The outlier

detection outlined here would not remove the corner choices of this individual, as shown

in Figure 20 in Appendix G of the Supplementary Online Material, which presents the

choice plots for two individuals: one whose outlier choice is removed by the procedure and

one whose choice is not. In any case, the modal and median number of outliers removed

for an individual in the linear and non-linear treatments is zero, and the mean is less than

1 in both treatments.

Fifth, to make the estimation robust to smaller outliers and larger error processes,

σε, we use weighted non-linear least squares on subjects’ choices. Specifically, we employ

bi-square weighting with the common tuning parameter κ = 4.685, w(r, κ) = 1(|r <

κ|)(1 − (r/κ)2)2, where r is the estimated residual (Huber (2004)). As is common with

weighted non-linear least squares, this weighting process is evaluated iteratively as in

Holland and Welsch (1977). We use the residuals from the last iteration of non-linear

least squares estimation process to weight the loss function in the current iteration. This

iteration continues until the loss function is below a function tolerance or the normed

difference between the last iteration’s estimated structural parameters and the current

iteration’s estimated structural parameters are below a tolerance band.

Thus, for each subject, we choose the parameters α, ρ to minimize:
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50∑
i/∈O

w(rk−1, κ)i(log(yi/xi)− f(log(pi1), log(pi2), Ki;αk, ρk, ω))2

s.t. αk ≤ max {pi1, pi2, (pi1)−1, (pi2)−1}50
i=1/∈O

Where O is the set of outliers for each subject and w(rk−1, κ) is the bi-square weighting

vector, rk−1 = log(yi/xi) − f(log(pi1), log(pi2), Ki;αk−1, ρk−1, ω) is the vector of residuals

from the previous iteration of non-linear least squares, and k denotes the iteration of the

weighted non-linear least squares algorithm. As noted, Tables 19-26 in Appendix G of

the Supplementary Online Material present the results of this estimation, (α̂, ρ̂), for each

individual in each of the linear and kinked treatments.
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